Paper Reference(s) 66669/01 Edexcel GCE

Further Pure Mathematics FP3

Advanced/Advanced Subsidiary

Monday 23 June 2014 – Morning

Time: 1 hour 30 minutes

<u>Materials required for examination</u> Mathematical Formulae (Pink) Items included with question papers Nil

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation or symbolic differentiation/integration, or have retrievable mathematical formulae stored in them.

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initials and signature. Check that you have the correct question paper.

Answer ALL the questions.

You must write your answer for each question in the space following the question. When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information for Candidates

A booklet 'Mathematical Formulae and Statistical Tables' is provided. Full marks may be obtained for answers to ALL questions. The marks for the parts of questions are shown in round brackets, e.g. (2). There are 9 questions in this question paper. The total mark for this paper is 75. There are 32 pages in this question paper. Any blank pages are indicated.

Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled. You must show sufficient working to make your methods clear to the Examiner. Answers without working may not gain full credit. 1. The line *l* passes through the point P(2, 1, 3) and is perpendicular to the plane Π whose vector equation is

$$\mathbf{r}.(\mathbf{i}-2\mathbf{j}-\mathbf{k})=3$$

Find

(a) a vector equation of the line l,
(b) the position vector of the point where l meets Π.
(c) Hence find the perpendicular distance of P from Π.
(2)

2.

$$\mathbf{M} = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 4 & 1 \\ 0 & 5 & 0 \end{pmatrix}$$

- (a) Show that matrix **M** is not orthogonal.
- (b) Using algebra, show that 1 is an eigenvalue of **M** and find the other two eigenvalues of **M**.
- (c) Find an eigenvector of **M** which corresponds to the eigenvalue 1.

The transformation $M: \sim^3 \rightarrow \sim^3$ is represented by the matrix **M**.

(d) Find a cartesian equation of the image, under this transformation, of the line

$$x = \frac{y}{2} = \frac{z}{-1}$$
 (4)

(2)

(5)

(2)

3. Using calculus, find the exact value of

(a)
$$\int_{1}^{2} \frac{1}{\sqrt{(x^{2} - 2x + 3)}} dx$$
(b)
$$\int_{0}^{1} e^{2x} \sinh x dx$$
(4)
(4)

- 4. Using the definitions of hyperbolic functions in terms of exponentials,
 - (*a*) show that

$$\operatorname{sech}^2 x = 1 - \tanh^2 x \tag{3}$$

(b) solve the equation 4sinh.

$$\sinh x - 3\cosh x = 3 \tag{4}$$

5. Given that
$$y = \operatorname{artanh} \frac{x}{\sqrt{1+x^2}}$$

show that
$$\frac{dy}{dx} = \frac{1}{\sqrt{1+x^2}}$$

6. [*In this question you may use the appropriate trigonometric identities on page 6 of the pink Mathematical Formulae and Statistical Tables.*]

The points $P(3\cos \alpha, 2\sin \alpha)$ and $Q(3\cos \beta, 2\sin \beta)$, where $\alpha \neq \beta$, lie on the ellipse with equation

$$\frac{x^2}{9} + \frac{y^2}{4} = 1$$

(a) Show the equation of the chord PQ is

$$\frac{x}{3}\cos\frac{(\alpha+\beta)}{2} + \frac{y}{2}\sin\frac{(\alpha+\beta)}{2} = \cos\frac{(\alpha-\beta)}{2}$$
(4)

(b) Write down the coordinates of the mid-point of PQ.

Given that the gradient, m, of the chord PQ is a constant,

(c) show that the centre of the chord lies on a line

$$y = -kx$$

expressing k in terms of m.

7. A circle *C* with centre *O* and radius *r* has cartesian equation $x^2 + y^2 = r^2$ where *r* is a constant.

(a) Show that
$$1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 = \frac{r^2}{r^2 - x^2}$$
.

- (b) Show that the surface area of the sphere generated by rotating C through π radians about the x-axis is $4\pi r^2$.
- (c) Write down the length of the arc of the curve $y = \sqrt{(1 x^2)}$ from x = 0 to x = 1.

(1)

(5)

(3)

P43147A

(1)

(5)

8. The position vectors of the points A, B and C from a fixed origin O are

$$\mathbf{a} = \mathbf{i} - \mathbf{j}, \quad \mathbf{b} = \mathbf{i} + \mathbf{j} + \mathbf{k}, \quad \mathbf{c} = 2\mathbf{j} + \mathbf{k}$$

respectively.

(a) Using vector products, find the area of the triangle ABC.

(b) Show that
$$\frac{1}{6}$$
a.(**b** × **c**) = 0. (3)

(c) Hence or otherwise, state what can be deduced about the vectors **a**, **b** and **c**.

(1)

(4)

9.

$$I_n = \int (x^2 + 1)^{-n} dx, \quad n > 0$$

(*a*) Show that, for n > 0,

$$I_{n+1} = \frac{x(x^2+1)^{-n}}{2n} + \frac{2n-1}{2n}I_n$$
(5)

(b) Find I_2 .

(3)

TOTAL FOR PAPER: 75 MARKS

END

Question	Scheme	Scheme	
	$P(2, 1, 3)$ and $\mathbf{r}.(\mathbf{i} - 2\mathbf{j})$	$(-\mathbf{k}) = 3$	
1.(a)	<i>l</i> is parallel to $\mathbf{i} - 2\mathbf{j} - \mathbf{k}$	An appreciation that i-2j-k is the direction of the line (may be implied).	M1
	$\mathbf{r}^{"} = 2\mathbf{i} + \mathbf{j} + 3\mathbf{k} + t(\mathbf{i} - 2\mathbf{j} - \mathbf{k})$ or $(\mathbf{r} - (2\mathbf{i} + \mathbf{j} + 3\mathbf{k})) \times (\mathbf{i} - 2\mathbf{j} - \mathbf{k}) = 0$ or $\mathbf{r} \times (\mathbf{i} - 2\mathbf{j} - \mathbf{k}) = (2\mathbf{i} + \mathbf{j} + 3\mathbf{k}) \times (\mathbf{i} - 2\mathbf{j} - \mathbf{k})$ or $\mathbf{r} \times (\mathbf{i} - 2\mathbf{j} - \mathbf{k}) = 5\mathbf{i} + 5\mathbf{j} - 5\mathbf{k}$	A correct vector <u>equation</u> in any form. (Allow any multiple of the direction vector.)	A1
-			(2)
(b)	$ \begin{pmatrix} 2+t\\ 1-2t\\ 3-t \end{pmatrix} \begin{pmatrix} 1\\ -2\\ -1 \end{pmatrix} = 3 $	Substitutes a parametric form of their line from part (a) into the equation of the plane. This statement is sufficient.	M1
	2 + t - 2(1 - 2t) - (3 - t) = 3	Correct equation (allow unsimplified)	A1
	$2+t-2+4t-3+t=3 \Longrightarrow t = \dots$	Solves to find a value for <i>t</i> Dependent on the first M	d M1
	$t = 1 \Longrightarrow l$ meets Π at $\mathbf{r} = 3\mathbf{i} - \mathbf{j} + 2\mathbf{k}$	Correct position vector (allow as coordinates (3, -1, 2))	A1
			(4)
	$PQ = \mathbf{3i} - \mathbf{j} + \mathbf{2k} - (\mathbf{2i} + \mathbf{j} + \mathbf{3k}) $		
(c)	$= \mathbf{i} - 2\mathbf{j} - \mathbf{k} = \sqrt{1^2 + 2^2 + 1^2}$	Attempts the vector PQ or QP and correct Pythagoras.	M1
Way 1	$=\sqrt{6}$	Allow awrt 2.45 or $\frac{6}{\sqrt{6}}$	A1
			(2)
	$t = "1" \Longrightarrow \overrightarrow{PQ} = "1" \times (\mathbf{i} - 2\mathbf{j} - \mathbf{k})$		
(c) Way 2	$= \mathbf{i} - 2\mathbf{j} - \mathbf{k} = \sqrt{1^2 + 2^2 + 1^2}$	Attempts the vector <i>PQ</i> using their value for <i>t</i> and their normal vector and correct Pythagoras.	M1
-	$=\sqrt{6}$	Allow awrt 2.45 or $\frac{6}{\sqrt{6}}$	A1
			(2)
			Total 8

Question	S	cheme		Marks
2.(a)	$\mathbf{M}\mathbf{M}^{\mathrm{T}} = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 4 & 1 \\ 0 & 5 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 4 & 5 \\ 2 & 1 & 0 \end{pmatrix}$	product of a or attempts	$[\mathbf{M}^{T} \text{ or } \mathbf{M}^{T}\mathbf{M} \text{ or scalar}$ t least one pair of columns magnitude of at least one inds det M or attempts \mathbf{M}^{-1}	M1
	$= \begin{pmatrix} 5 & 2 & 0 \\ 2 & 17 & 20 \\ 0 & 20 & 25 \end{pmatrix} \neq \mathbf{I}$ $\therefore \mathbf{M} \text{ not orthogonal.}$	or det $\mathbf{M} \neq \pm$ $\mathbf{M}^{\mathrm{T}} \underline{\mathbf{and}}$ con $\mathbf{M}\mathbf{M}^{\mathrm{T}}$ or \mathbf{M} may be error correct work	boduct $\neq 0$ or magnitude $\neq 1$ 1 (must see \pm) or $\mathbf{M}^{-1} \neq$ inclusion. Note that not all of \mathbf{I}^{-1} is necessary and there rs but there must be some is (at least one correct ment). NB det $\mathbf{M} = -5$. See For \mathbf{M}^{-1}	A1
				(2)
(b)	$\begin{vmatrix} 1 - \lambda & 0 & 2 \\ 0 & 4 - \lambda & 1 \\ 0 & 5 & -\lambda \end{vmatrix} = 0$	other bra	ement is sufficient. (allow ckets provided the ant is implied later)	M1
	$(1-\lambda) \left[(4-\lambda)(-\lambda) - 5 \right]$	5](-0(0-0))	+2(0-0))=0	M1
	Attempts characteristic equation (=) Allow one slip e.g. – usu	0 may be im	plied by their value(s) for λ)	
	$(1-\lambda)((4-\lambda)(-\lambda)-5) = 0$			
	$\lambda = 1$		$\lambda = 1$ with no errors	Alcso
	$\lambda^{2} - 4\lambda - 5 = 0$ from th 3 term		nd the other 2 eigenvalues ristic equation by solving a	M1A1
				(5)
(c)	$ \begin{pmatrix} 1 & 0 & 2 \\ 0 & 4 & 1 \\ 0 & 5 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \text{or} \begin{pmatrix} 0 & 0 & 2 \\ 0 & 3 & 1 \\ 0 & 5 & -1 \end{pmatrix} $	$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$	A correct statement for the eigenvalue 1. (May be implied by correct equations)	M1
	$\alpha(\mathbf{i}+0\mathbf{j}+0\mathbf{k})$ where α is a co	nstant	Any vector of this form.	A1
		I		(2)
(d)	$ \begin{pmatrix} 1 & 0 & 2 \\ 0 & 4 & 1 \\ 0 & 5 & 0 \end{pmatrix} \begin{pmatrix} t \\ 2t \\ -t \end{pmatrix} = \begin{pmatrix} -t \\ 7t \\ 10t \end{pmatrix} $	parametric line by M. <i>x</i> compon <u>through t</u>	ct image vector with or	M1A1
	Cartesian equation $\frac{x}{-1} = \frac{y}{7} = \frac{z}{10}$	cartesian f passing th	ect method to convert to form of a straight line arough the origin . ct equations (any multiple)	M1A1
				(4)
				Total 13

Question	Scheme	3	Marks
3.(a)	$x^2 - 2x + 3 = (x - 1)^2 + 2$	M1: Attempt to complete the square. Allow $(x-1)^2 + k, k \neq 0$ A1: Correct expression	M1A1
	$\int \frac{1}{\sqrt{(x-1)^2+2}} dx = \alpha \operatorname{arsinh}(f(x))$	Allow $\alpha \ln \left(f(x) + \sqrt{(f(x))^2 + \beta} \right) (\beta > 0)$	M1
	$\left[\arcsin\left(\frac{x-1}{\sqrt{2}}\right) \right]_{1}^{2} = \operatorname{arsinh} \frac{1}{\sqrt{2}}$	Any equivalent exact form. Allow $\ln\left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)$ but no other terms e.g. arsinh(0)	A1
		terms e.g. arshin(0)	(4)
(b)	$e^{2x}\sinh x = e^{2x}\left(\frac{e^x - e^{-x}}{2}\right)$	Substitutes the correct exponential of sinh <i>x</i>	M1
	$\frac{1}{2}(e^{3x}-e^x)$	Correct expression with powers of e combined.	A1
	$\int_{-1}^{1} (3x - x) \int_{-1}^{1} (1 - 3x - x) \int_{-1}^{$	$\int e^{px} dx = q e^{px}$ at least once and	
	$\int_{0}^{1} \frac{1}{2} (e^{3x} - e^{x}) dx = \left[\frac{1}{2} \left(\frac{1}{3} e^{3x} - e^{x} \right) \right]_{0}^{1}$ $= \frac{1}{2} \left(\frac{1}{3} e^{3} - e^{1} \right) - \frac{1}{2} \left(\frac{1}{3} e^{0} - e^{0} \right)$	some correct use of the limits 0 and 1 and subtracts the right way round.	M1
	$=\left(\frac{\mathrm{e}^{3}}{\mathrm{6}}-\frac{\mathrm{e}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}\right)$	Any exact equivalent (allow e ¹) but all like terms collected but isw following a correct answer.	A1
			(4)
			Total 8
	(b) Integration by		
	$I = \left[\frac{1}{2}e^{2x}\sinh x\right]_{0}^{1} - \int_{0}^{1}\frac{1}{2}e^{2x}\cosh x dx = \left[\frac{1}{2}e^{2x}\right]_{0}^{1}$		
	$\frac{3}{4}I = \left[\frac{1}{2}e^{2x}\sinh x\right]_0^1 - \left[\frac{1}{2}e^{2x}\sin x\right]_0^1 - \left[\frac{1}{2$	$\left[\frac{1}{4}e^{2x}\cosh x\right]_{0}^{1}$	
	M1: Parts twice in the α		
	A1: A correct expression for <i>I</i> or $\int_{-1}^{1} 2x + 1 = 1 = A(1 + 2) + 1 = 1$		
	$\int_{0}^{1} e^{2x} \sinh x dx = \frac{4}{3} \left(\frac{1}{2} e^{2} \sinh 1 - \frac{1}{2} e^{2x} \sinh 1 - \frac{1}{2} e^{2x} \sinh 1 - \frac{1}{2} e^{2x} \sin 1 - \frac{1}{2} e^{2x$,	
	M1: Correct use of limits having A1: Correct expre		
	(b) Integration by		
	$I = \left[e^{2x}\cosh x\right]_{0}^{1} - \int_{0}^{1} 2e^{2x}\cosh x dx = \left[e^{2x}\cosh x\right]_{0}^{1} - \left[2e^{2x}\sinh x\right]_{0}^{1} + 4I$		
	$-3I = \left[e^{2x}\cosh x\right]_0^1 - \left[2e^{2x}\sinh x\right]_0^1$		
	M1: Parts twice in the correct direction A1: A correct expression for <i>I</i> or any constant multiple of <i>I</i>		
	$\int_0^1 e^{2x} \sinh x dx = -\frac{1}{3} \left(e^2 \cosh 1 - 1 - 2e^2 \sinh 1 \right)$		
	M1: Correct use of limits having A1: Correct expre		

Question	Sche	eme	Marks
4.(a)	$ tanhx = \frac{\frac{e^{x} - e^{-x}}{2}}{\frac{e^{x} + e^{-x}}{2}} \text{ or} $	M1	
	Use of the correct expe	onential form of tanhx	
	$1 - \tanh^2 x = 1 - \left(\frac{e^x - e^{-x}}{e^x + e^{-x}}\right)^2 = \frac{1}{2}$	$\frac{(e^{2x} + e^{-2x} + 2) - (e^{2x} + e^{-2x} - 2)}{(e^{x} + e^{-x})^{2}}$	d M1
	Attempts $1 - \tanh^2 x$ with their tanhx	, obtains a common denominator and	
	expands the numerator correctly – the	ree terms from $(a+b)^2$ at least once	
	$=\frac{2e^{x}.2e^{-x}}{(e^{x}+e^{-x})^{2}}$		
	$= \frac{2e^{x} \cdot 2e^{-x}}{(e^{x} + e^{-x})^{2}}$ $= \frac{4}{(e^{x} + e^{-x})^{2}} = \operatorname{sec} h^{2} x^{*}$	Correct completion with no errors	A1*
	Note that it is possible to start from	low candidates to process both sides and 'meet in the middle' e that it is possible to start from $\operatorname{sech}^2 x$ and obtain $1 - \tanh^2 x$ by reversing the above work	
			(3)
(b)	Ignore any imagina	ary solutions in (b)	
	$4\left(\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{2}\right)-3\left(\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2}\right)=3$	Substitutes the correct exponential forms for sinhx and coshx	M1
	$\frac{e^x - 7e^{-x} = 6}{e^{2x} - 6e^x - 7 = 0}$		
	$e^{2x} - 6e^x - 7 = 0$	Obtains a quadratic in e ^x	M1
	$(e^x+1)(e^x-7)=0 \Longrightarrow e^x=$	Attempt to solve their 3TQ in e^x as far as $e^x =$	M1
	$x = \ln 7$ or awrt 1.95		A1
			(4)
			Total 7

Alternativ	ves for (b)	
$4\sinh x - 3\cosh x = 3 =$	$\Rightarrow 4 \sinh x = 3 + 3 \cosh x$	M1
\Rightarrow 7 cosh ² x - 18 cosh x - 25 = 0		M1
M1: Attempt to square correctly	M1: Attempt to square correctly and obtains a quadratic in sinhx	
$7\cosh^2 x - 18\cosh x - 25 = 0 \Longrightarrow (7\cosh x - 25)(\cosh x + 1) = 0$		
$\cosh x = \frac{25}{7} \Longrightarrow \frac{e^x + e^{-x}}{2} = \frac{25}{7}$	$\frac{5}{2} \Rightarrow 7e^{2x} - 50e^x + 7 = 0$	
Uses the correct form of coshx in terms	s of exponentials to obtain a 3TQ in e^x	M1
$7e^{2x} - 50e^{x} + 7 = 0 \Longrightarrow \left(7e^{x}\right)$	$(-1)(e^x-7)=0 \Rightarrow e^x=\dots$	M1
Attempt to solve their	r 3TQ as far as $e^x =$	
$x = \ln 7$ or awrt 1.95	No other values	A1
$4\sinh x - 3\cosh x = 3 =$	$\Rightarrow 4 \sinh x - 3 = 3 \cosh x$	M1
$\Rightarrow 7 \sinh^2 x - 24 \sinh x = 0$		IVI I
M1: Attempt to square correctly and obtains a quadratic in coshx		
$7\sinh^2 x - 24\sinh x = 0 \Longrightarrow \sinh x (7\sinh x - 24) = 0$		
$\sinh x = \frac{24}{7} \Longrightarrow \frac{e^{x} - e^{-x}}{2} = \frac{24}{7} \Longrightarrow 7e^{2x} - 48e^{x} - 7 = 0$		
Uses the correct form of sinhx in terms of exponentials to obtain a 3TQ in e^x		M1
$7e^{2x} - 48e^{x} - 7 = 0 \Longrightarrow (7e^{x} + 1)(e^{x} - 7) = 0 \Longrightarrow e^{x} = \dots$		M1
Attempt to solve their 3TQ as far as $e^x =$		
$x = \ln 7$ or awrt 1.95 No other values		A1
$4 \sinh x - 3 \cosh x = 3 \equiv$ $\Rightarrow 25 \tanh^2 x -$		M1
M1: Attempt to square correctly and obtains a quadratic in tanhx		
$25 \tanh^2 x - 24 \tanh x = 0 \Longrightarrow$		
$\tanh x = \frac{24}{25} \Longrightarrow \frac{e^x - e^z}{e^x + e^z}$	$\frac{1}{2x} = \frac{24}{25} \Longrightarrow e^{2x} = 49$	
Uses the correct form of tanhx in terms	s of exponentials to obtain a 2TQ in e^x	M1
$e^{2x} = 49 \Rightarrow e^x = \dots$		M1
Attempt to solve their 2TQ as far as $e^x =$		
	No other values	A1

5. $\frac{dy}{dx} = \left(\frac{1}{1-\frac{x^2}{1+x^2}}\right) \left(\frac{(1+x^2)^{\frac{1}{2}}-x^2(1+x^2)^{\frac{1}{2}}}{(1+x^2)}\right)}{(1+x^2)} \qquad \qquad$	Question	Scheme	Marks
$\frac{(4)}{\text{Total 4}}$ $\frac{(4)}{(1+x^2)}$ $\frac{(4)}{\sqrt{1+x^2}}$ $\frac{(1+x^2)^{\frac{1}{2}}}{(1+x^2)}$ $\frac{(4)}{\sqrt{1+x^2}}$ $\frac{(1+x^2)^{\frac{1}{2}}}{(1+x^2)^2}$ $\frac{(4)}{\sqrt{1+x^2}}$ $\frac{(4)}{\sqrt{1+x^2}}$ $\frac{(1+x^2)^{\frac{1}{2}}}{(1+x^2)^2}$ $\frac{(4)}{\sqrt{1+x^2}}$ $\frac{(1+x^2)^{\frac{1}{2}}}{(1+x^2)^2}$ $\frac{(1+x^2)^{\frac{1}{2}}}{(1+x^2)^2}$ $\frac{(1+x^2)^{\frac{1}{2}}}{(1+x^2)^2}$ $\frac{(1+x^2)^{\frac{1}{2}}}{(1+x^2)^2}$ $\frac{(1+x^2)^{\frac{1}{2}}}{(1+x^2)^2}$ $\frac{(1+x^2)^{\frac{1}{2}}}{(1+x^2)^2}$ $\frac{(1+x^2)^{\frac{1}{2}}}{(1+x^2)^2}$	5.	$\frac{dy}{dx} = \left(\frac{1}{1 - \frac{x^2}{1 + x^2}}\right) \left(\frac{(1 + x^2)^{\frac{1}{2}} - x^2(1 + x^2)^{-\frac{1}{2}}}{(1 + x^2)}\right)$ $NB \frac{(1 + x^2)^{\frac{1}{2}} - x^2(1 + x^2)^{-\frac{1}{2}}}{(1 + x^2)} = \frac{1}{(1 + x^2)^{\frac{3}{2}}}$ $\frac{M1}{x^2}: Correct quotient or product rule on \frac{x}{\sqrt{1 + x^2}}}{A1: Completely correct}$	<u>M1M</u> A1
$\frac{Alternative 1}{y = \operatorname{artanh} \frac{x}{\sqrt{1+x^2}} \Rightarrow \tanh y = \frac{x}{\sqrt{1+x^2}}}$ $\frac{dy}{dx} = \left(\frac{1}{1-\frac{x^2}{1+x^2}}\right) \left(\frac{(1+x^2)^{\frac{1}{2}}-x^2(1+x^2)^{\frac{1}{2}}}{(1+x^2)}\right)$ $\frac{M!}{dx} = \left(\frac{1}{1-\frac{x^2}{1+x^2}}\right) \left(\frac{(1+x^2)^{\frac{1}{2}}-x^2(1+x^2)^{\frac{1}{2}}}{(1+x^2)}\right)$ $\frac{M!}{dx} : \operatorname{Completely correct} form of \operatorname{sech}^2 y \text{ in terms of } x$ $\frac{M!M}{M!} \text{ Correct quotient or product rule}$ $\frac{M!M}{A!} : \operatorname{Completely correct} = \frac{A}{1+x^2}$ $\frac{M!M}{\sqrt{1+x^2}} \Rightarrow \tanh y = \frac{x}{\sqrt{1+x^2}} \Rightarrow \tanh^2 y = \frac{x^2}{1+x^2}$ $\frac{2 \tanh y \operatorname{sech}^2 y \frac{dy}{dx} = \left(\frac{2x(1+x^2)-2x^3}{(1+x^2)^2}\right)}{\frac{dy}{dx} = \left(\frac{1}{1-\frac{x^2}{1+x^2}}\right) \times \frac{(1+x^2)^{\frac{1}{2}}}{2x} \times \frac{2x(1+x^2)-2x^3}{(1+x^2)^2}}{\frac{M!M}{2x}}$ $\frac{M!M}{M!} \text{ A1}$ $M!M \text{ A1}$		$=\frac{1}{\sqrt{1+x^2}}$ **ag** Correct solution with no errors seen	
Alternative 1 $y = \operatorname{artanh} \frac{x}{\sqrt{1+x^2}} \Rightarrow \tanh y = \frac{x}{\sqrt{1+x^2}}$ $\operatorname{sech}^2 y \frac{dy}{dx} = \left(\frac{(1+x^2)^{\frac{1}{2}} - x^2(1+x^2)^{-\frac{1}{2}}}{(1+x^2)}\right)$ $\frac{dy}{dx} = \left(\frac{1}{1-\frac{x^2}{1+x^2}}\right) \left(\frac{(1+x^2)^{\frac{1}{2}} - x^2(1+x^2)^{-\frac{1}{2}}}{(1+x^2)}\right)$ $\frac{\mathrm{M1}: \text{Divides by the}}{\operatorname{correct form of sech^2y or ther simplified sech^2y in terms of x} \\ \frac{\mathrm{M1}: \text{Correct quotient or product rule} \\ \mathrm{A1: \ Completely \ correct} \\ expression$ $\frac{\mathrm{M1} \mathrm{M} \mathrm{A1}}{\sqrt{1+x^2}}$ $\frac{\mathrm{M1} \mathrm{M} \mathrm{A2}}{\mathrm{M1} \mathrm{M} \mathrm{A2}$ $\frac{\mathrm{M1} \mathrm{M} \mathrm{A2}}{\mathrm{M1} \mathrm{M} \mathrm{A2} \mathrm{M1} \mathrm{M2} \mathrm{M2}$			· · · · ·
$\frac{y = \operatorname{artanh} \frac{x}{\sqrt{1+x^2}} \Rightarrow \operatorname{tanh} y = \frac{x}{\sqrt{1+x^2}}}{\operatorname{sech}^2 y \frac{dy}{dx} = \left(\frac{(1+x^2)^{\frac{1}{2}} - x^2(1+x^2)^{\frac{1}{2}}}{(1+x^2)}\right)}{\left(1+x^2\right)}$ $\frac{\frac{dy}{dx} = \left(\frac{1}{1-\frac{x^2}{1+x^2}}\right) \left(\frac{(1+x^2)^{\frac{1}{2}} - x^2(1+x^2)^{\frac{1}{2}}}{(1+x^2)}\right)}{\left(1+x^2\right)}\right)$ $\frac{\frac{M1}{\text{ brides by the correct form of sech^2y or their simplified sech^2y in terms of x}{\operatorname{terms of x}} M1 \text{ MA1}$ $\frac{M1M \text{ A1}}{M1 \text{ Correct quotient or product rule}}$ $\frac{M1M \text{ A1}}{A1 \text{ Completely correct}}$ $\frac{W1M \text{ A1}}{\sqrt{1+x^2}} = \frac{X^2}{(1+x^2)^{\frac{1}{2}} + x^2} \Rightarrow \tanh^2 y = \frac{x^2}{1+x^2}$ $\frac{Y = \operatorname{artanh} \frac{x}{\sqrt{1+x^2}} \Rightarrow \tanh y = \frac{x}{\sqrt{1+x^2}} \Rightarrow \tanh^2 y = \frac{x^2}{1+x^2}}{2 \tanh y \sech^2 y \frac{dy}{dx} = \left(\frac{2x(1+x^2)-2x^3}{(1+x^2)^2}\right)}$ $\frac{dy}{dx} = \left(\frac{1}{1-\frac{x^2}{1+x^2}}\right) \times \frac{(1+x^2)^{\frac{1}{2}}}{2x} \times \frac{2x(1+x^2)-2x^3}{(1+x^2)^2}}{(1+x^2)^2}$ $\frac{M1M \text{ A1}}{M1 \text{ Correct quotient or product rule}}$		Alternative 1	
$\frac{dy}{dx} = \left(\frac{1}{1-\frac{x^2}{1+x^2}}\right) \left(\frac{\left(1+x^2\right)^{\frac{1}{2}}-x^2(1+x^2)^{\frac{1}{2}}}{(1+x^2)}\right)}{\left(1+x^2\right)^{\frac{1}{2}}} \qquad \frac{M1: \text{ Divides by the correct form of sech}^2 y \text{ or their simplified sech}^2 y \text{ in terms of } x}{M1: \text{ Correct quotient or product rule} A1: \text{ Completely correct}}} \\ \frac{M1M}{M1: \text{ Correct quotient or product rule} A1: \text{ Completely correct}}}{2} \\ \frac{y = \operatorname{artanh} \frac{x}{\sqrt{1+x^2}} \Rightarrow \tanh y = \frac{x}{\sqrt{1+x^2}} \Rightarrow \tanh^2 y = \frac{x^2}{1+x^2}}{2} \\ 2 \tanh y \operatorname{sech}^2 y \frac{dy}{dx} = \left(\frac{2x(1+x^2)-2x^3}{(1+x^2)^2}\right)}{\frac{dy}{dx} = \left(\frac{1}{1-\frac{x^2}{1+x^2}}\right)} \times \frac{(1+x^2)^{\frac{1}{2}}}{2x} \times \frac{2x(1+x^2)-2x^3}{(1+x^2)^2}}{(1+x^2)^2}} \\ \frac{M1M}{M1: \text{ Divides by the correct form of sech}^2 y \text{ and tanhy in terms of } x}{M1: \text{ Correct quotient or product rule}} A1: \text{ Completely correct expression}} \\ \frac{M1M}{M1: \text{ Divides by the correct form of sech}^2 y = \frac{x^2}{1+x^2}}{2x} \\ \frac{M1M}{M1: \text{ Divides by the correct form of sech}^2 y \text{ and tanhy in terms of } x}{M1: \text{ Correct quotient or product rule}} \\ \frac{M1M}{A1} \\ \frac{M1M}$		$y = \operatorname{artanh} \frac{x}{\sqrt{1+x^2}} \Longrightarrow \operatorname{tanh} y = \frac{x}{\sqrt{1+x^2}}$	-
$\frac{dy}{dx} = \left(\frac{1}{1-\frac{x^2}{1+x^2}}\right) \left(\frac{(1+x^2)^{\frac{1}{2}}-x^2(1+x^2)^{-\frac{1}{2}}}{(1+x^2)}\right) \qquad \begin{bmatrix} correct form of sech^2y or their simplified sech^2y in terms of x \\ \underline{M1}: Correct quotient or product rule \\ A1: Completely correct expression \end{bmatrix} \underbrace{M1M A1}$ $\frac{M1M A1}{\frac{M1M A1}}$		$\operatorname{sech}^{2} y \frac{\mathrm{d}y}{\mathrm{d}x} = \left(\frac{(1+x^{2})^{\frac{1}{2}} - x^{2}(1+x^{2})^{-\frac{1}{2}}}{(1+x^{2})} \right)$	
Alternative 2 $y = \operatorname{artanh} \frac{x}{\sqrt{1+x^2}} \Rightarrow \operatorname{tanh} y = \frac{x}{\sqrt{1+x^2}} \Rightarrow \operatorname{tanh}^2 y = \frac{x^2}{1+x^2}$ $2 \operatorname{tanh} y \operatorname{sech}^2 y \frac{dy}{dx} = \left(\frac{2x(1+x^2)-2x^3}{(1+x^2)^2}\right)$ $\frac{dy}{dx} = \left(\frac{1}{1-\frac{x^2}{1+x^2}}\right) \times \frac{(1+x^2)^{\frac{1}{2}}}{2x} \times \frac{2x(1+x^2)-2x^3}{(1+x^2)^2}}{(1+x^2)^2}\right)$ M1: Divides by the correct form of sech ² y and tanhy in terms of x M1: Correct quotient or product rule A1: Completely correct expression		$\frac{dy}{dx} = \left(\frac{1}{1 - \frac{x^2}{1 + x^2}}\right) \left(\frac{(1 + x^2)^{\frac{1}{2}} - x^2(1 + x^2)^{-\frac{1}{2}}}{(1 + x^2)}\right)$ $\overline{(1 + x^2)}$ \overline	<u>M1M</u> A1
Alternative 2 $y = \operatorname{artanh} \frac{x}{\sqrt{1+x^2}} \Rightarrow \operatorname{tanh} y = \frac{x}{\sqrt{1+x^2}} \Rightarrow \operatorname{tanh}^2 y = \frac{x^2}{1+x^2}$ $2 \operatorname{tanh} y \operatorname{sech}^2 y \frac{dy}{dx} = \left(\frac{2x(1+x^2)-2x^3}{(1+x^2)^2}\right)$ $\frac{dy}{dx} = \left(\frac{1}{1-\frac{x^2}{1+x^2}}\right) \times \frac{(1+x^2)^{\frac{1}{2}}}{2x} \times \frac{2x(1+x^2)-2x^3}{(1+x^2)^2}}{(1+x^2)^2}\right)$ M1: Divides by the correct form of sech ² y and tanhy in terms of x M1: Correct quotient or product rule A1: Completely correct expression			
$y = \operatorname{artanh} \frac{x}{\sqrt{1+x^2}} \Rightarrow \operatorname{tanh} y = \frac{x}{\sqrt{1+x^2}} \Rightarrow \operatorname{tanh}^2 y = \frac{x^2}{1+x^2}$ $2 \operatorname{tanh} y \operatorname{sech}^2 y \frac{dy}{dx} = \left(\frac{2x(1+x^2)-2x^3}{(1+x^2)^2}\right)$ $\frac{dy}{dx} = \left(\frac{1}{1-\frac{x^2}{1+x^2}}\right) \times \frac{(1+x^2)^{\frac{1}{2}}}{2x} \times \frac{2x(1+x^2)-2x^3}{(1+x^2)^2}}{(1+x^2)^2}$ $M1: \text{ Divides by the correct form of sech}^2 y \text{ and tanhy in terms of } x$ $M1: \text{ Correct quotient or product rule}$ $A1: \text{ Completely correct expression}$			
$\frac{dy}{dx} = \left(\frac{1}{1 - \frac{x^2}{1 + x^2}}\right) \times \frac{(1 + x^2)^{\frac{1}{2}}}{2x} \times \frac{2x(1 + x^2) - 2x^3}{(1 + x^2)^2}$ M1: Divides by the correct form of sech ² y and tanhy in terms of x M1: Correct quotient or product rule A1: Completely correct expression			
M1: Divides by the correct form of sech ² y and tanhy in terms of x M1: Correct quotient or product rule A1: Completely correct expression		2 tanh y sech ² y $\frac{dy}{dx} = \left(\frac{2x(1+x^2)-2x^3}{(1+x^2)^2}\right)$	
M1: Correct quotient or product rule A1: Completely correct expression		$\frac{dy}{dx} = \left(\frac{1}{1 - \frac{x^2}{1 + x^2}}\right) \times \frac{(1 + x^2)^{\frac{1}{2}}}{2x} \times \frac{2x(1 + x^2) - 2x^3}{(1 + x^2)^2}$	<u>M1M</u> A1
Then as above		M1: Correct quotient or product rule	
		Then as above	

Question	Scheme		Marks
	In this question condone the	use of <i>a</i> and/or <i>b</i> for α and β	
6(a)	Gradient $m = \frac{2\sin\beta - 2\sin\alpha}{3\cos\beta - 3\cos\alpha}$	Correct attempt at chord gradient – do not allow slips unless a correct method is clear	M1
	$y - 2\sin \alpha = m(x - 3\cos \alpha)$ or $y - 2\sin \beta = m(x - 3\cos \beta)$ or $y = mx + c$ and attempts to find c using P or Q	A correct straight line method using their chord gradient and the point P or the point Q	M1
	$y - 2\sin\alpha = \frac{2\sin\beta}{3\cos\beta}$ $y - 2\sin\beta = \frac{2\sin\beta}{3\cos\beta}$		
	$y - 2\sin\alpha = \frac{4\cos\frac{\alpha+\beta}{2}}{-6\sin\frac{\alpha+\beta}{2}}$	2	A1
	$y = \frac{2\sin\beta - 2\sin\alpha}{3\cos\beta - 3\cos\alpha}x + 2\sin\alpha$	ā	
	$y = -\frac{2\cos\frac{\alpha+\beta}{2}}{3\sin\frac{\alpha+\beta}{2}}x + 2\sin\frac{\alpha+\beta}{2}x $		
	A correct equation for t		
	$3y\sin\frac{1}{2}(\alpha + \beta) + 2x\cos\frac{1}{2}(\alpha + \beta) = 6(c\alpha + \beta) = $		
	$3y\sin\frac{1}{2}(\alpha+\beta) + 2x\cos\frac{1}{2}(\alpha+\beta) = 6(c)$		
	$\frac{x}{3}\cos\frac{1}{2}(\alpha+\beta) + \frac{y}{2}\sin\frac{1}{2}(\alpha+\beta)$	$+\beta) = \cos\frac{1}{2}(\alpha - \beta) **ag**$	A1cso
	This is cso – there must no errors in applying the factor formulae and sufficient working must be shown to justify the printed answer but allow		
	$\cos\beta\cos\frac{1}{2}(\alpha+\beta)+\sin\beta$	$\sin\frac{1}{2}(\alpha+\beta) = \cos\frac{\alpha-\beta}{2}$	
	· · · · · · · · · · · · · · · · · · ·		(4)
(b)	$\left(\frac{3\cos\alpha+3\cos\beta}{2},\frac{2\sin\alpha+2\sin\beta}{2}\right)$		
	or $(3\cos\frac{1}{2}(\beta+\alpha)\cos\frac{1}{2}(\beta-\alpha), 2\sin\frac{1}{2}(\beta+\alpha)\cos\frac{1}{2}(\beta-\alpha))$		B1
	$(3\cos\frac{1}{2}(\alpha+\beta)\cos\frac{1}{2}(\alpha-\beta),$	r $2\sin\frac{1}{2}(\alpha+\beta)\cos\frac{1}{2}(\alpha-\beta))$	
	Correct coordinates of Coordinates must be in this order b	mid-point in any form	(1)
			(1)

Question	Scheme	Marks	
(c)	Centre of chord is $(3\cos\frac{1}{2}(\beta+\alpha)\cos\frac{1}{2}(\beta-\alpha), 2\sin\frac{1}{2}(\beta+\alpha)\cos\frac{1}{2}(\beta-\alpha))$ Attempt factor formulae on both coordinates of mid-point at any stage in (c) May be implied by their $\pm \frac{y}{2}$ below	M1	
	$\pm \frac{y}{x} = \pm \frac{2\sin\frac{1}{2}(\beta+\alpha)\cos\frac{1}{2}(\beta-\alpha)}{3\cos\frac{1}{2}(\beta+\alpha)\cos\frac{1}{2}(\beta-\alpha)} \left(= \pm \frac{2\sin\frac{1}{2}(\beta+\alpha)}{3\cos\frac{1}{2}(\beta+\alpha)} \right)$ Or $3\cos\frac{1}{2}(\beta+\alpha)\cos\frac{1}{2}(\beta-\alpha) \left(-3\cos\frac{1}{2}(\beta+\alpha) \right)$		
	$\frac{\pm \frac{x}{y} = \pm \frac{3\cos\frac{1}{2}(\beta + \alpha)\cos\frac{1}{2}(\beta - \alpha)}{2\sin\frac{1}{2}(\beta + \alpha)\cos\frac{1}{2}(\beta - \alpha)} \left(= \pm \frac{3\cos\frac{1}{2}(\beta + \alpha)}{2\sin\frac{1}{2}(\beta + \alpha)} \right)}{M1: \text{ Obtains an expression for } k \text{ or } -k \text{ or } \frac{1}{k} \text{ or } -\frac{1}{k}}{K}$		
	Dependent on the previous M1 (factor formulae must have been used) A1: Correct expression in any form		
	$m = -\frac{2\cos\frac{1}{2}(\beta + \alpha)}{3\sin\frac{1}{2}(\beta + \alpha)}$ Must be seen or used in (c)	B1	
	$\frac{\sin\frac{1}{2}(\beta+\alpha)}{\cos\frac{1}{2}(\beta+\alpha)} = -\frac{2}{3m} \operatorname{So} \frac{y}{x} = \frac{2}{3} \left(-\frac{2}{3m}\right) \Longrightarrow k = \frac{4}{9m}$	Alcso	
		(5) Total 10	

Question	Sch		Marks
7.(a)	$y = \sqrt{r^2 - x^2} \Rightarrow \frac{dy}{dx} = -x(r^2 - x^2)^{-\frac{1}{2}}$ Or $2x + 2y\frac{dy}{dx} = 0$	$\frac{dy}{dx} = px(r^2 - x^2)^{-\frac{1}{2}}$ Or $px + qy\frac{dy}{dx} = 0$	M1
	$\frac{2x + 2y}{dx} = 0$ Attempts to differentiate explicitly or in	uл	
		Substitutes their derivative into	
	$1 + \left(\frac{dy}{dx}\right)^2 = 1 + \frac{x^2}{r^2 - x^2} \text{ or } 1 + \frac{x^2}{y^2}$	$1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2$	M1
	$=\frac{r^2-x^2+x^2}{r^2-x^2}=\frac{r^2}{r^2-x^2}*$	cso	A1*
	This is cso and so there must be no err		
	answer but loses the A1 but allow	to show equivalence of lhs and rhs	(2)
(b)			(3)
	$S = (2\pi) \int y \sqrt{\frac{r^2}{r^2 - x^2}} \mathrm{d}x$	M1: Use of $\int y \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$ using their answer to part (a) (must be y and not y ²) 2π not required here A1: Correct expression including 2π (may be implied by later work but must appear before any integration)	M1A1
	$= (2\pi) \int \sqrt{r^2 - x^2} \sqrt{\frac{r^2}{r^2 - x^2}} \mathrm{d}x$	Substitutes for <i>y</i> in terms of <i>x</i> . Dependent on first M.	d M1
	$= \left[2\pi r x\right]_{-r}^{r} \text{ or } \left[2\pi r x\right]_{0}^{r}$	Substitutes the limits r and $-r$ or 0 and r into an expression of the form $\underline{k\pi rx}$ and subtracts. The use of the 0 limit can be taken on trust if omitted. Dependent on both previous method marks.	ddM1
	If they reach $2\pi r^2$ correctly then	double, then some justification is	
	needed e.g. some me	ention of symmetry	
	$=4\pi r^2 *$	cso	A1 (7)
	Note that $S = 2 \times 2\pi \int_0^r y \sqrt{\frac{r^2}{r^2 - x^2}}$		(5)
	score full marks as could the co	prrect use of $S = (2\pi) \int y \sqrt{\frac{r^2}{y^2}} dx$	
(c)	arc length $=\frac{\pi}{2}$	Ignore any working	B1
			(1) Total 9

Question	Scheme		Marks
8.(a)	$\mathbf{OA} = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \mathbf{OB} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \mathbf{OC} = \mathbf{AB} =$	$\mathbf{E} \begin{pmatrix} 0\\2\\1 \end{pmatrix}, \mathbf{BC} = \begin{pmatrix} -1\\1\\0 \end{pmatrix}, \mathbf{AC} = \begin{pmatrix} -1\\3\\1 \end{pmatrix}$	
	$AB \times AC = -i - j + 2k$ Or e.g. $BA \times BC = i + j - 2k$	M1: Attempt vector product for two sides of the triangle. If the method is unclear, at least 2 components must be correct. A1: Correct vector	M1A1
	Area ABC = $\frac{1}{2}\sqrt{1^2 + 1^2 + 2^2}$	Attempts $\frac{1}{2}$ their AB × AC	dM1
-	1 /	Dependent on the first M	
	$\frac{1}{2}\sqrt{6}$	Accept equivalents or awrt 1.22	A1
ſ	Note that triangles OAB and OBC ha It must be trian		
	it must be trial		(4)
(b)	$\mathbf{b} \times \mathbf{c} = (\mathbf{i} + \mathbf{j} + \mathbf{k}) \times (2\mathbf{j} + \mathbf{k}) = -\mathbf{i} - \mathbf{j} + 2\mathbf{k}$	Attempt $\mathbf{b} \times \mathbf{c}$. If the method is unclear, at least 2 components must be correct.	M1
	$=\left(\frac{1}{6}\right)(\mathbf{i}-\mathbf{j}).(-\mathbf{i}-\mathbf{j}+\mathbf{2k})=\left(\frac{1}{6}\right)(-1+1)=0$	M1: Attempt scalar product of a with their $\mathbf{b} \times \mathbf{c}$ to obtain a number not a vector. A1: Obtains = 0 with no errors (allow omission of $\frac{1}{6}$ for all 3 marks) Just = $\mathbf{a}.(-\mathbf{i} - \mathbf{j} + 2\mathbf{k}) = 0$ would lose the A1	M1A1
			(3)
	Alternat	ive	
	$(\mathbf{a}.\mathbf{b} \times \mathbf{c} =) \begin{vmatrix} 1 & -1 & 0 \\ 1 & 1 & 1 \\ 0 & 2 & 1 \end{vmatrix}$	Writes this statement (allow other brackets provided the determinant is implied later)	M1
	=(1-2)+1(1)-0=0	M1: Clear attempt at determinant A1: Obtains = 0 with no errors (allow omission of $\frac{1}{6}$ for all 3 marks)	M1A1
(c)	Volume of tetrahedro $\mathbf{a} = \mathbf{b} - \mathbf{c}$ oe or \mathbf{c} $\mathbf{b} \ge \mathbf{c}$ is perpendicular to \mathbf{a} All vectors/points lie i OABC is a para \mathbf{a}, \mathbf{b} and \mathbf{c} are linea	$\mathbf{c} = \mathbf{b} - \mathbf{a}$ oe or \mathbf{a} is parallel to \mathbf{CB} n the same plane allelogram rly dependent	B1
F	Do not isw – if there are contradictor	y or wrong statements award B0	(1)
			(1) Total 8

Question	Scheme	e	Marks
9(a)	$\int (x^2 + 1)^{-n} dx = x(x^2 + 1)^{-n} + \frac{1}{2} \int (x^2 + 1)^{-n} dx = \frac{1}{2} \int (x^2 + 1$	$-\int xn(x^2+1)^{-n-1}2x\mathrm{d}x$	M1A1
	M1: Integration by parts in A1: Correct ex (If the parts formula is not quoted and the $= x(x^{2}+1)^{-n} + 2n \int x^{2}(x^{2}+1)^{-n-1} dx$	pression	
	$= x(x^{2}+1)^{-n} + 2n\int (x^{2}+1)^{-n} - (x^{2}+1)^{-n-1}dx$	Use of $x^2 = x^2 + 1 - 1$ or equivalent. Dependent on the previous method mark.	dM1
	$I_n = x(x^2 + 1)^{-n} + 2nI_n - 2nI_{n+1}$	Correctly replaces $\int (x^2 + 1)^{-n} dx \text{ and } \int (x^2 + 1)^{-n-1} dx \text{ by}$ <i>I_n</i> and <i>I_{n+1}</i> . Dependent on both previous method marks .	ddM1
	$I_{n+1} = \frac{x(x^2+1)^{-n}}{2n} + \frac{2n-1}{2n}I_n$	Correct completion to the printed answer with no errors .	Alcso
			(5)
(b)	$I_2 = \frac{x(x^2+1)^{-1}}{2} + \frac{1}{2}I_1$	Correct application of the given reduction formula using $n = 1$ only	M1
	$I_1 = \int \frac{\mathrm{d}x}{x^2 + 1} = \arctan x \left(+C \right)$	$I_1 = k \arctan x$ (must be x and not just for arctan)	M1
	$I_2 = \frac{x}{2(x^2 + 1)} + \frac{1}{2}\arctan x(+C)$	Cao (constant not needed)	A1
			(3) Total 8
			101010

Extra Notes

2. (a)
$$\mathbf{M}^{-1} = \frac{1}{5} \begin{pmatrix} 5 & -10 & 8 \\ 0 & 0 & 1 \\ 0 & 5 & -4 \end{pmatrix}$$

 $\mathbf{M}^{\mathrm{T}} \mathbf{M} = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 41 & 4 \\ 2 & 4 & 5 \end{pmatrix}$

3. (b) Parts once then exponentials

$$I = \left[\frac{1}{2}e^{2x}\sinh x\right]_{0}^{1} - \int_{0}^{1}\frac{1}{2}e^{2x}\cosh x dx = \left[\frac{1}{2}e^{2x}\frac{e^{x} - e^{-x}}{2}\right]_{0}^{1} - \int_{0}^{1}\frac{1}{2}e^{2x}\frac{e^{x} + e^{-x}}{2}dx$$

M1 integrates by parts and writes cosh*x* as exponentials A1 Correct expression

$$= \left[\frac{1}{2}e^{2x}\frac{e^{x}-e^{-x}}{2}\right]_{0}^{1} - \left[\frac{1}{12}e^{2x}+\frac{1}{4}e^{x}\right]_{0}^{1} = \left[\frac{1}{2}\left(\frac{1}{3}e^{3x}-e^{x}\right)\right]_{0}^{1} == \frac{1}{2}\left(\frac{1}{3}e^{3}-e^{1}\right) - \frac{1}{2}\left(\frac{1}{3}e^{0}-e^{0}\right)$$

M1 $\int e^{px} dx = qe^{px}$ at least once and correct use of the limits 0 and 1

$$= \left(\frac{\mathrm{e}^3}{6} - \frac{\mathrm{e}}{2} + \frac{1}{3}\right) \,\mathrm{A1}$$

Any exact equivalent (allow e¹) but all like terms collected but isw following a correct answer.